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Introduction
The structure and function of RNA molecules in cells are regu-
lated with more than 100 chemical modifications, but the spe-
cific functions of the majority of those modifications are still 
enigmatic.1 While most of the RNA nucleotide modifications 
are believed to be static due to their covalent attachments, m6A 
is the first type of RNA methylation found to be revisable.2 
Even though m6A is the most prevalent internal mRNA deco-
ration found in eukaryotes and RNA of nuclear-replicating 
viruses, the physiological function and the prevalence of this 
post-transcriptional RNA modification remain merely partially 
revealed. It was reported that m6A in nuclear RNA functions as 
a physiological substrate of fat mass and obesity-associated pro-
tein.3 The m6A sites were found on many clock gene transcripts 
and believed to be related to circadian period elongation and 
RNA processing delay.4 More recent studies show that m6A is 
crucial in RNA metabolic processes as it regulates the stability, 
structure, processing, and translation of RNA. Instability of 

m6A homeostasis would result in flaws in stem cell regulation, 
decrease in fertility, and risk of cancer.5

The transcriptome-wide mapping of m6A was available in 
2012, due to the invention of methylated RNA immunoprecipi-
tation sequencing method (MeRIP-seq or m6A-seq).6,7 In this 
method, isolated mRNA is fragmented into ∼100 nucleotides 
with part of the fragments reserved as untreated input control 
and the rest precipitated by m6A-specific antibodies. Then, both 
input control and immunoprecipitated (IP) samples are reverse-
transcripted to cDNA. After amplification, the cDNA is sub-
jected to high-throughput sequencing. Next, by comparing 
signal enrichment of IP samples with input controls, the loca-
tion of m6A may be identified. The MeRIP-seq plays a pivotal 
role in the study of m6A. Based on this technique, m6A was 
found to be a ubiquitous modification of mRNA discovered in 
the mRNAs of more than 7600 genes. The m6A is enriched 
around stop codons, within long internal exons and 3′ untrans-
lated regions (3′UTRs). This clustering tenet was consistent in 
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both human and mouse cells, which suggests that m6A may be 
fundamental in regulating gene expression.6,7 By investigating 
the whole-transcriptome m6A profiles of 8 types of major 
human tissues using MeRIP-seq, a positive correlation between 
m6As and gene expression homeostasis was observed.5 However, 
the MeRIP-seq process is laborious and time-consuming, and 
may take up to 9 days to complete.8 Furthermore, the data are 
still prone to various bias and artifacts.9 Although there are 
already hundreds of MeRIP-seq experiments collected in exist-
ing RNA modification databases such as RMBase10 and 
MeT-DB,11 they still cover very limited tissue contexts, and a 
matched RNA methylation profile is usually not available for an 
arbitrary biological condition.

The biological system is a coordinated system. There exists 
a significant correlation between different types of genetic and 
epigenetic features that work in harmony to achieve various 
biological functions. The idea and feasibility of computational 
predicting omic features have been well documented in previ-
ous works,12 eg, Whitaker et al13 predicted the entire human 
epigenome from DNA motifs via the Epigram pipeline. The 
possibility of predicting DNA methylome was explored using 
various approaches.13-20 Recently, Nath et  al21 predicted the 
long non-coding RNA transcriptome with protein-coding 
genes. In the field of epitranscriptome bioinformatics, 
although there exists the potential to train the transcriptome-
wide prediction model to predict the entire epitranscriptome, 
most works focused on RNA modification site prediction from 
a single DNA or RNA sequence.22,23 Please refer to a com-
prehensive review.24 Recently, Chen et  al25 developed the 
WHISTLE method and constructed so far the most accurate 
m6A epitranscriptome from sequence and genomic features; 
however, similar to other approaches, the WHISTLE method 
provided only a general m6A epitranscriptome without consid-
ering its dynamics (or condition-specificity). Machine learning 
predictors were developed for better characterization of the 
single-based m6A profile on sub-regions of mRNA, such as the 
LITHOPHONE26 and WITMSG27 for the prediction of 
intronic and lncRNA m6A sites. Prediction modeling may also 
be applied to the functional annotation of m6A28 and other 
types of internal mRNA modifications such as pseudo-
uridine29 and m7G.30 The deep-m6A approach developed by 
Zhang et al may perform condition-specific quantification of 
the m6A epitranscriptome at base resolution. However, it 
requires matched epitranscriptome sequencing data (MeRIP-
seq), which may not be available in most biological contexts of 
interests, thus limiting its usage.31 Compared with the RNA 
methylation data, gene expression data are more abundant in 
public databases and are much easier to obtain. Hence, it is 
highly desirable to develop in silico approaches to predict the 
condition-specific RNA methylation status from matched 
gene expression data.

In this article, we sought to computationally predict the 
RNA methylation status from gene expression data. We first 
differentiated the methylated and unmethylated RNA sites 

using classification methods, then estimated the methylation 
level using regression methods. Our results suggested that gene 
expression data can be used to construct predictors of RNA 
methylation status, which provides a new and easier venue for 
the pilot studies of RNA methylation under various biological 
contexts.

Materials and Methods
RNA methylation and gene expression data

MeRIP-seq data of 73 IP samples from different types of 
mouse cells paired with their matched input controls were 
collected for this study (Supplement S1). Among them, 58 
samples were used for training, and the remaining 15 samples 
served as the testing set. It is worth noting that the input con-
trol of MeRIP-seq data is essentially RNA-seq, which corre-
sponds to gene expression data. For the candidate m6A RNA 
methylation sites, we considered the 102 024 m6A sites reported 
by base-resolution techniques (m6A-CLIP and miCLIP) that 
were collected from the WHISTLE project.25 Reads of 
MeRIP-seq data in IP samples and input samples are both 
quantified in terms of reads per million reads mapped (RPKM). 
Furthermore, we used the M-value, ie, log2 ratio of reads in 
IP to reads in input,32 to determine the status of RNA 
methylation:
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For classification analysis, the methylation status of a site is 
considered positive when the corresponding M-value is greater 
than 0; otherwise, it is regarded as negative. For regression 
analysis, we seek to directly predict the absolute amount of 
methylation from matched gene expression data after log2  
transformation. An independent pair of input and IP data 
obtained from human cells under different experimental con-
ditions (31 samples, 69 433 sites, see Supplement S2) were also 
tested to evaluate the generalizability of our predicting scheme 
on human data.

Furthermore, as a contrast to models based on expression 
level, we also trained Elastic Net-regularized Logistic 
Regression (ENLR), Support Vector Machine (SVM), and 
Random Forests (RF) by incorporating sequence-based fea-
tures, including the presence of purine, amino group and weak 
hydrogen bonds, and cumulative frequency of nucleotide with 
window width 41 bp centered by m6A.25

The 100 sites with the greatest variation in m6A modifica-
tion level were selected for classification and regression analy-
sis, because these sites were most dynamic and were potentially 
most responsive to various stimulus and more crucial when 
studying the context-specificity of m6A RNA methylation. For 
each target site, the gene expression profile of the correspond-
ing site and its 1000 neighbor sites was selected as our predic-
tive features to construct classifiers and regressors. Because of 
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having a lot more features than samples, the prediction model 
would result in a typical “large p small n” paradigm33; therefore, 
both the regression and classification analysis required sparse 
estimators to avoid overfitting.

Classif ication and regression methods

For classification analysis, ie, to differentiate methylated m6A 
sites and unmethylated m6A sites, we used ENLR, SVM, and 
RF for classification, as they were reported to be promising 
classifiers in previous DNA methylation predicting tasks.13,14,19 
The ENLR model minimizes an objective function consisting 
of negative log-likelihood of logistic regression along with both 
l1 - and l2 -penalty to obtain a sparse generalized linear model 
by shrinking the coefficients of less-informative sites into 
zeros.34 There are 2 parameters to be learned, one is the overall 
weight of the penalty and the other is the weight between l1 - 
and l2 -penalty. SVM maps features of interest into a higher 
dimensional space via kernel functions and generates a decision 
hypersurface that maximizes the margin between examples 
from different categories.35 We chose radial basis function as 
our kernel and tuned the inverse kernel width for the radial 
basis kernel function as well as the cost regularization param-
eter which controls the smoothness of the fitted function. RF is 
an ensemble learning algorithm that generates a specified 
number of decision trees and cast predictions based on the 
majority of the votes from an individual tree.36 For RF, we 
optimized the number of variables randomly sampled as candi-
dates at each split.

For regression analysis, ie, to estimate directly the absolute 
RNA methylation level of m6A site, we considered the Elastic 
Net (EN) family with objective function:
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where s  is the sample size, y  is the response, β  is the coef-
ficient to be estimated, X  is the covariate, ⋅ 1  is the l1 -norm 

Figure 1.  Model performance on the mouse test set: (A) All 3 classifiers 

have a median AUC over 0.8 in the identification of condition-specific 

m6A sites. Among them, SVM achieved the best performance as it has 

the highest AUC and the narrowest AUC spread. (B) Both median PCC 

and SCC between the predicted value by ENLR and the actual value are 

above 0.7, which implies a strong linear and monotonic relation between 

the predicted and actual values. AUC indicates area under ROC; ENLR, 

Elastic Net-regularized Logistic Regression; PCC, Pearson correlation 

coefficient; RF, Random Forests; SCC, Spearman correlation coefficient; 

SVM, Support Vector Machine.

and ⋅
2

 is the l2 -norm. Note that when α =1 , this model 
reduces to lasso; when α = 0 , this model reduces to ridge 
regression. All analysis was implemented in R. The scripts and 
processed data used in this project are publicly downloadable 
on GitHub (https://github.com/xvehao/m6Aprediction).

Results and Discussions
Predict condition-specif ic m6A sites with 
classif ication analysis

For each site, we constructed ENLR, SVM, and RF models as 
classifiers, ran a 5-fold cross-validation to tune the parameters 
of each model with the caret R package,37 and then tested their 
performance on the testing samples. To evaluate the perfor-
mance of classifiers, we generated the receiver operating char-
acteristic (ROC) curve (true positive rate vs false positive rate 
under different threshold) and computed the area under the 
ROC curve (AUC) as the metric. As shown in Figure 1A, posi-
tive classification results were achieved from all the 3 classifiers 
tested with their AUCs substantially higher than the classifiers 
based on sequence features (highest median AUC = 0.54 by 
ENLR, see Supplement S3), which suggested that it is indeed 
possible to predict context-specific m6A RNA methylation 
sites from matched gene expression data. The medians of AUC 
of 3 methods across test samples were very close, but the result 
of SVM had a narrower AUC spread and the highest overall 
accuracy.

To further investigate the expression level of which kinds 
of genes were determinant in predicting m6A status, we exam-
ined the biological meaning of ENLR model because ENLR 
can perform feature selection automatically due to its sparse 
property. We performed gene site enrichment analysis, with 
DAVID,38 using those sites ever selected as predictors by 
ENLR as input and all sites as background. Three functional 
annotation terms were found to be statistically significant with 
Family Wise Error Rate less than 0.05: phosphoprotein, SRC 
Homology 3 (SH3) domain, and Endoplasmic Reticulum 
(ER). This result further attached potential biochemical sig-
nificance to ENLR model as all 3 terms were found to be 
closely related to the m6A pathway in literature.

The first 2 terms may refer to the formation of a methyl-
transferases (MTases) complex comprising MTase-like 3 
(Mettl3) and MTase-like 14 (Mettl14), called Mettl3-Mettl14 
complex. This complex efficiently catalyzes methyl group 
transfer by using Mettl3 as catalytic core and Mettl14 as an 
RNA-binding platform. Moreover, Mettl3-Mettl14 complex 
exhibits a much higher catalytic activity than either Mettl3 or 
Mettl14 alone in vitro. The Mettl3 MTase domain and the 
Mettl14 MTase domain are connected by the N-terminal –
-helical motif (NHM) and by the C-terminal motif (CTM) 
with a phosphoserine via a salt bridge. Phosphorylation there-
fore plays an important regulatory role in MTase binding as it 
ensures the 2 MTases are connected tightly, and their extensive 
interaction network is difficult to disrupt.39 SH3 domain is 

https://github.com/xvehao/m6Aprediction


4	 Evolutionary Bioinformatics ﻿

important in salt bridge formation between the conserved 
acidic residue in the SH3 domain and the favored arginine 
residue, either N-terminal or C-terminal to the Pro-X-X-Pro 
motif,40 which is exactly the structure of Mettl3-Mettl14 com-
plex. Moreover, the change in ER also alters the m6A modifica-
tion. ER stress responses are found to contribute to differential 
m6A modification,41 and SIALKBH2, an active m6A demeth-
ylase, is found to be located in the ER.42 After analyzing the 
mechanism of ENLR model, we conjecture that the gene 
expression level of sites regulating phosphoprotein, SH3 
domain, and ER might influence the formation of Mettl3-
Mettl14 complex and demethylation of m6A in ER, and there-
fore are associated with the m6A level.

Predict condition-specif ic m6A level with regression 
analysis

In the regression analysis, we ran a 5-fold cross-validation to 
tune the associated parameters with mean squared error 
(MSE) as the metric. Furthermore, we computed both Pearson 
correlation coefficient (PCC) and Spearman correlation coef-
ficient (SCC) between predicted methylation value and the 
MeRIP-seq data to evaluate the performance of our regressor 
(Figure 1B). While PCC measured the linearity between 2 
data sets, SCC accessed the monotonic relationship between 
them. Both PCC and SCC were within −1 to 1, and a higher 
absolute value of PCC or SCC implied higher concordance 
between 2 data sets. The median of both PCC and SCC across 
different samples was above 0.7, suggesting a strong linear 
relationship between the predicted value and the actual value, 
while the median PCC and SCC obtained by model based on 
sequence-based features were respectively, 0.49 and 0.43 
(Supplement S3). We identified 1 outlier in the boxplot with 
PCC −0.1 and SCC −0.15, which corresponds to Mettl3 
knocked-out mouse embryonic stem cell. The abnormal 

performance of our regressor on this particular sample was 
likely to be caused by the removal of Mettl3, which was 
reported to lead to near-complete depletion of m6A on 
mRNA,43 thus rendering the association between gene expres-
sion level and m6A methylation level completely different 
from that in other types of cells.

Additional investigation on human data

To further investigate whether our predicting scheme could be 
generalized to different species, we tested our classifiers with 
independent input and IP data obtained from different types 
of human cells under heterogeneous experimental conditions 
(26 samples as training set, 5 as testing). The AUC of each 
model on test set was shown by Table 1, from which we can see 
that the gene expression data can serve as covariates for effec-
tively predicting m6A methylation status in human cells as well, 
with SVM being the best classifier.

Conclusions
We implemented both regression and classification to predict 
RNA m6A methylation from gene expression data. With the 
positive results, we showed, for the first time, that condition-
specific m6A methylation status may be predicted from gene 
expression data. Gene Site Enrichment Analysis on important 
sites by ENLR further suggested that those sites related to 
phosphoprotein, SH3 domain and ER be determinant in m6A 
methylation status prediction. Therefore, we recommend that 
features related to those 3 functional terms should be consid-
ered in regressors or classifiers in future m6A predicting study. 
We are optimistic that the accuracy may be further improved 
with efforts.

Nevertheless, our work suffers from the 3 main limitations. 
First, as the data samples were collected from different public 
data sets provided by different laboratories under heterogene-
ous experimental conditions, the systematic error arising in 
each experiment is unavoidable. Different experiment reagents 
and protocols (such as polyA selection and ribo-minus in RNA 
library construction) may lead to a substantial difference 
between samples. As a consequence, the accuracy of prediction 
would be undermined. The prediction models could be trained 
later using the technical independent quantification and the 
inference methods on MeRIP-Seq. Second, as MeRIP-Seq 
data are prohibitively difficult to obtain, it is possible that the 
limited samples in hand may not be representative of all mouse/
human cells. Therefore, larger-scale MeRIP-seq data from dif-
ferent tissues and developmental stages are needed for the 
development of prediction tools with higher accuracy in future 
studies. Third, while we considered in our prediction only the 
gene expression data in the form of RNA-seq, it is reasonable 
to assume that the accuracy may be further improved with 
other matched omic data, such as proteomic data from LC/MS 
or DNA methylation data.

Table 1.  Performance of classifiers (AUC) on the human test set.

Sample Classification method

ENLR SVM RF

1 0.90 0.91 0.91

2 0.82 0.86 0.89

3 0.82 0.88 0.87

4 0.85 0.91 0.76

5 0.77 0.80 0.71

Average 0.83 0.87 0.83

Abbreviations: AUC, area under ROC curve, ROC, receiver operating 
characteristic; ENLR, Elastic Net-regularized Logistic Regression; RF, Random 
Forests; SVM, Support Vector Machine.
All 3 classifiers have an average AUC above 0.8. SVM achieved the best 
performance in the identification of condition-specific m6A sites.
The bold values in the table highlight the best performance achieved in each 
sample.
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